scholarly journals Climate Simulations of African Easterly Waves

1999 ◽  
Vol 12 (6) ◽  
pp. 1747-1769 ◽  
Author(s):  
John C. Fyfe
2017 ◽  
Vol 145 (2) ◽  
pp. 599-616 ◽  
Author(s):  
Abdou L. Dieng ◽  
Saidou M. Sall ◽  
Laurence Eymard ◽  
Marion Leduc-Leballeur ◽  
Alban Lazar

In this study, the relationship between trains of African easterly waves (AEWs) and downstream tropical cyclogenesis is studied. Based on 19 summer seasons (July–September from 1990 to 2008) of ERA-Interim reanalysis fields and brightness temperature from the Cloud User Archive, the signature of AEW troughs and embedded convection are tracked from the West African coast to the central Atlantic. The tracked systems are separated into four groups: (i) systems originating from the north zone of the midtropospheric African easterly jet (AEJ), (ii) those coming from the south part of AEJ, (iii) systems that are associated with a downstream trough located around 2000 km westward (termed DUO systems), and (iv) those that are not associated with such a close downstream trough (termed SOLO systems). By monitoring the embedded 700-hPa-filtered relative vorticity and 850-hPa wind convergence anomaly associated with these families along their trajectories, it is shown that the DUO generally have stronger dynamical structure and statistically have a longer lifetime than the SOLO ones. It is suggested that the differences between them may be due to the presence of the previous intense downstream trough in DUO cases, enhancing the low-level convergence behind them. Moreover, a study of the relationship between system trajectories and tropical depressions occurring between the West African coast and 40°W showed that 90% of tropical depressions are identifiable from the West African coast in tracked systems, mostly in the DUO cases originating from the south zone of the AEJ.


2003 ◽  
Vol 53 ◽  
pp. 91-108
Author(s):  
Robert W. Burpee

Abstract No Abstract available.


2012 ◽  
Vol 140 (11) ◽  
pp. 3634-3652 ◽  
Author(s):  
Bryce Tyner ◽  
Anantha Aiyyer

Abstract The evolution of African easterly waves (AEWs) leading to tropical cyclones (TCs) in the Atlantic during 2000–08 is examined from isentropic potential vorticity (PV) and Lagrangian streamline perspectives. Tropical cyclone formation is commonly preceded by axisymmetrization of PV, scale contraction of the wave, and formation of a closed circulation within the wave. In these cases, PV associated with the synoptic-scale wave is irreversibly deformed and subsumed within the developing vortex. Less commonly, filamentation of the PV leads to separation and independent propagation of the wave and the TC vortex. In an example presented here, the remnant wave with a closed circulation persisted for several days after separation from the TC. A second TC did not result, consistent with several past studies that show that a midtropospheric closed gyre is not sufficient for TC genesis. Sometimes, an AEW and a weak TC remain coupled for a few days, followed by the dissipation of the TC and the continued propagation of the wave. Merger of tropical and extratropical PV anomalies is also often observed and likely helps maintain some waves. The results of this study are broadly consistent with recent Lagrangian analyses of AEW evolution during TC genesis.


2010 ◽  
Vol 36 (7-8) ◽  
pp. 1379-1401 ◽  
Author(s):  
Paula A. Agudelo ◽  
Carlos D. Hoyos ◽  
Judith A. Curry ◽  
Peter J. Webster

2006 ◽  
Vol 27 (2-3) ◽  
pp. 319-332 ◽  
Author(s):  
Christophe Lavaysse ◽  
Arona Diedhiou ◽  
Henri Laurent ◽  
Thierry Lebel

2014 ◽  
Vol 27 (22) ◽  
pp. 8323-8341 ◽  
Author(s):  
Rachel R. McCrary ◽  
David A. Randall ◽  
Cristiana Stan

Abstract The relationship between African easterly waves and convection is examined in two coupled general circulation models: the Community Climate System Model (CCSM) and the “superparameterized” CCSM (SP-CCSM). In the CCSM, the easterly waves are much weaker than observed. In the SP-CCSM, a two-dimensional cloud-resolving model replaces the conventional cloud parameterizations of CCSM. Results show that this allows for the simulation of easterly waves with realistic horizontal and vertical structures, although the model exaggerates the intensity of easterly wave activity over West Africa. The simulated waves of SP-CCSM are generated in East Africa and propagate westward at similar (although slightly slower) phase speeds to observations. The vertical structure of the waves resembles the first baroclinic mode. The coupling of the waves with convection is realistic. Evidence is provided herein that the diabatic heating associated with deep convection provides energy to the waves simulated in SP-CCSM. In contrast, horizontal and vertical structures of the weak waves in CCSM are unrealistic, and the simulated convection is decoupled from the circulation.


Sign in / Sign up

Export Citation Format

Share Document